A tabyl
is a data.frame
containing counts of a variable or
co-occurrences of two variables (a.k.a., a contingency table or crosstab).
This specialized kind of data.frame has attributes that enable adorn_
functions to be called for precise formatting and presentation of results.
E.g., display results as a mix of percentages, Ns, add totals rows or
columns, rounding options, in the style of Microsoft Excel PivotTable.
A tabyl
can be the result of a call to janitor::tabyl()
, in which case
these attributes are added automatically. This function adds tabyl
class
attributes to a data.frame that isn't the result of a call to tabyl
but
meets the requirements of a two-way tabyl: 1) First column contains values of
variable 1 2) Column names 2:n are the values of variable 2 3) Numeric values
in columns 2:n are counts of the co-occurrences of the two variables.*
= this is the ideal form of a
tabyl
, but janitor'sadorn_
functions tolerate and ignore non-numeric columns in positions 2:n.
For instance, the result of dplyr::count()
followed by tidyr::pivot_wider()
can be treated as a tabyl
.
The result of calling tabyl()
on a single variable is a special class of
one-way tabyl; this function only pertains to the two-way tabyl.
Arguments
- dat
a data.frame with variable values in the first column and numeric values in all other columns.
- axes
is this a two_way tabyl or a one_way tabyl? If this function is being called by a user, this should probably be "2". One-way tabyls are created by
tabyl
but are a special case.- row_var_name
(optional) the name of the variable in the row dimension; used by
adorn_title()
.- col_var_name
(optional) the name of the variable in the column dimension; used by
adorn_title()
.
Value
Returns the same data.frame, but with the additional class of "tabyl" and the attribute "core".
Examples
as_tabyl(mtcars)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2