Skip to contents

For hunting duplicate records during data cleaning. Specify the data.frame and the variable combination to search for duplicates and get back the duplicated rows.

Usage

get_dupes(dat, ...)

Arguments

dat

The input data.frame.

...

Unquoted variable names to search for duplicates. This takes a tidyselect specification.

Value

A data.frame with the full records where the specified variables have duplicated values, as well as a variable dupe_count showing the number of rows sharing that combination of duplicated values. If the input data.frame was of class tbl_df, the output is as well.

Examples

get_dupes(mtcars, mpg, hp)
#>   mpg  hp dupe_count cyl disp drat    wt  qsec vs am gear carb
#> 1  21 110          2   6  160  3.9 2.620 16.46  0  1    4    4
#> 2  21 110          2   6  160  3.9 2.875 17.02  0  1    4    4

# or called with the magrittr pipe %>% :
mtcars %>% get_dupes(wt)
#>     wt dupe_count  mpg cyl  disp  hp drat  qsec vs am gear carb
#> 1 3.44          3 18.7   8 360.0 175 3.15 17.02  0  0    3    2
#> 2 3.44          3 19.2   6 167.6 123 3.92 18.30  1  0    4    4
#> 3 3.44          3 17.8   6 167.6 123 3.92 18.90  1  0    4    4
#> 4 3.57          2 14.3   8 360.0 245 3.21 15.84  0  0    3    4
#> 5 3.57          2 15.0   8 301.0 335 3.54 14.60  0  1    5    8

# You can use tidyselect helpers to specify variables:
mtcars %>% get_dupes(-c(wt, qsec))
#>   mpg cyl disp  hp drat vs am gear carb dupe_count    wt  qsec
#> 1  21   6  160 110  3.9  0  1    4    4          2 2.620 16.46
#> 2  21   6  160 110  3.9  0  1    4    4          2 2.875 17.02
mtcars %>% get_dupes(starts_with("cy"))
#>    cyl dupe_count  mpg  disp  hp drat    wt  qsec vs am gear carb
#> 1    8         14 18.7 360.0 175 3.15 3.440 17.02  0  0    3    2
#> 2    8         14 14.3 360.0 245 3.21 3.570 15.84  0  0    3    4
#> 3    8         14 16.4 275.8 180 3.07 4.070 17.40  0  0    3    3
#> 4    8         14 17.3 275.8 180 3.07 3.730 17.60  0  0    3    3
#> 5    8         14 15.2 275.8 180 3.07 3.780 18.00  0  0    3    3
#> 6    8         14 10.4 472.0 205 2.93 5.250 17.98  0  0    3    4
#> 7    8         14 10.4 460.0 215 3.00 5.424 17.82  0  0    3    4
#> 8    8         14 14.7 440.0 230 3.23 5.345 17.42  0  0    3    4
#> 9    8         14 15.5 318.0 150 2.76 3.520 16.87  0  0    3    2
#> 10   8         14 15.2 304.0 150 3.15 3.435 17.30  0  0    3    2
#> 11   8         14 13.3 350.0 245 3.73 3.840 15.41  0  0    3    4
#> 12   8         14 19.2 400.0 175 3.08 3.845 17.05  0  0    3    2
#> 13   8         14 15.8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> 14   8         14 15.0 301.0 335 3.54 3.570 14.60  0  1    5    8
#> 15   4         11 22.8 108.0  93 3.85 2.320 18.61  1  1    4    1
#> 16   4         11 24.4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> 17   4         11 22.8 140.8  95 3.92 3.150 22.90  1  0    4    2
#> 18   4         11 32.4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> 19   4         11 30.4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> 20   4         11 33.9  71.1  65 4.22 1.835 19.90  1  1    4    1
#> 21   4         11 21.5 120.1  97 3.70 2.465 20.01  1  0    3    1
#> 22   4         11 27.3  79.0  66 4.08 1.935 18.90  1  1    4    1
#> 23   4         11 26.0 120.3  91 4.43 2.140 16.70  0  1    5    2
#> 24   4         11 30.4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> 25   4         11 21.4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 26   6          7 21.0 160.0 110 3.90 2.620 16.46  0  1    4    4
#> 27   6          7 21.0 160.0 110 3.90 2.875 17.02  0  1    4    4
#> 28   6          7 21.4 258.0 110 3.08 3.215 19.44  1  0    3    1
#> 29   6          7 18.1 225.0 105 2.76 3.460 20.22  1  0    3    1
#> 30   6          7 19.2 167.6 123 3.92 3.440 18.30  1  0    4    4
#> 31   6          7 17.8 167.6 123 3.92 3.440 18.90  1  0    4    4
#> 32   6          7 19.7 145.0 175 3.62 2.770 15.50  0  1    5    6